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BRANCHING AND STABILITY OF PERMANENT ROTATIONS AND RELATIVE EQUILIBRIA 
OF A BODY SUSPENDED FROM A ROD* 

V.N. RUBANOVSKII 

The problem of the motion of a rigid body withatriaxialcentralellipsoid 
of inertia suspended from a fixed point of a weightless non-deformable 
rod whose point of contact with the body lies on the principal central 
axis of inertia, is considered. Sets of all permanent rotations and 
relative equilibria of the body,their branching and sthility, are 
studied. The results are presented in the form of bifurcation diagrams. 
The distribution of permanent rotations (relative equilibria) on these 
diagrams obeys the law of variation of stability when the value of the 
area integration constant (the angular velocity of the translational 
rotation of the body) is fixed. 

The permanent rotations and relative equilibria of a body suspended on a string 
were studied in /l-3/. 

1. Let us considerthemotion of a body suspended on a hinge from a weightless non- 
deformable rod attached to a fixed point 0, with the point of suspension 0 lying on the 
principal central axis of inertia. 

The equations of motion of the body admit of energy and area integrals, and we have the 
following expression /4/ for the changed potential energy of the system: 

W = '/z k*J-’ + Jl 

II=-mg(Zv-a).%, J=x.8.x+m[zX (Iv-aa)]% 

Here k is the constant of the area integral, n is the potential energy due to gravity, 
J is the moment of inertia of thebody about the vertical passing through the point O,,m and 
8 is the mass and central tensor of inertia of the body with diagonal elements J,, J,, J,,x 
and v are unit vectors of the descending vertical and the direction of the string from the 
point 0, to 0, a is the radius vector of the point 0 relative to the centre of mass C of the 
body, and g and 1 are the acceleration due to gravity and the length of the rod. 

We introduce two right rectangular coordinate systems: the system Cx,x,x, rigidly 
attached to the body, whose axes coincide with the principal central axes of inertia, and the 

system O1ulY,Y, rotating with angular velocity 8 = kJ_’ about they, axis directed vertically 
downwards. 

We shall assume that the point 0 at which the rod is joined to the body, lies on the XQ 
axis whose direction coincides with the direction of the vector a. We shall denote by v, 
the projections of the vector v on to the y,(s=1,2,3) axes. Let a,fi,v betheunitvectors 
of the xln x2, x3 axes and a., B,, yd their projections on to the y,axes, and 

n,=c$-l=O, n,=fl2-110, n,=~=-l=o, n,= 

+-I=0 

na9=a.p=0, n,,=fi.y=O, n,,=y.a=O 

(1.1) 
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We have the following expressions for 11 and .3 in the Oyly~y, coordinate system: 

li= - Ing (lv, - uys), I = J,a," + Jzj3% + J,y,2 -I- ,n J(EYI-- ny,)' i- (lv, - "y#] 

Further, instead of W we shall consider the function 

w*=w -/- '/&"(A,n,+ A a% -tQQ + &n,-I- z&c,n,,+ 
2hp3gcf3y + 2&J,), s2 = kP 

where A,, h,,. . ., ?+a are the undetermined Lagrange multipliers. 

2. The condition of stationarity 

SW*=0 G-1) 

of thefunction W, with respect to the variables introduced, together with (X.1), leads to 
the equations for determining the stationary motions of the body , representing its uniform 
rotations about the vertical with angular velocity !&=kJ~-', where ko, J, are the values 
of k, J for the stationary motion /4/. 

From (2.1) we obtain (the relations not written out are obtained by circular permutation 
of the symbols withinthebrackets) 

(2.2) 

Relations (2.2) for TX,%‘% imply that in the case of stationary motions the rod and zrQ 
axis lie in the same vertical plane. 

Taking into account (2.2), we obtain from the relation &~=&a the relation (Jf - J& 
a& = 0, which leads, when Jr=+ J2* to the following two cases: CQ+= 0 and fis= 0. 

Let us consider the case a, = 0. Taking into account (2.2) we obtain, from &=&, 
the relation which leads to the analysis of two subcases 

B,=O 
mgaa,* 

Or y3 =- @](A=+ mn8)hy* -j- (mal)a] 

(Aj3 = Jj - J,t i = 1, 2) 

The assumption that fi3=0, yields the solutions 

(2.3) 

The solutions (2.4) describe four one-parameter families of uniform rotations of the body, 
in which the rod and the x3 axis are both vertical, the point 0 can lie below (v~= I), as well 
as above (vQ=-1)' the point o,, and the centre of mass C below (y3=-1), or above (y8= 1) 
the point 0. Fig.1 shows the relative positions of the points &,o,c in the uniform rotations 
(2.4). 

The second assumption of (2.3) leads to the solution 
vg=y2=fle=a,=a,=o, a,=l, B1=ys, pa=-yl, 

Y12 = 1 - Ysz. 

(2.5) 

Let us now consider the case p3= 0, when the relation &ST=&, taking both (2.2) 
and (1.1) into account, yields a relation which leads to the fol.lowing two subcases: 

a3=0 or y3=- 
mgaa,* 

W [(A, -t maa)h,* + (mal)*] 
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The first case leads to solutions (2.41, and the second case leads to a solution which 
will be described by the formulas (2.5) in which the symbols (&P2) have been circularly 
permuted. We shall call this solution (2.6). 

Solutions (2.5) and (2.6) describe the one-parameter families of uniform rotations of 
the system, as a single rigid body, about the vertical, with angular velocity 8, in which the 
rod.and the x,axis both lie in the o&y, plane. The 2, axis for (2.5) and 2% axis for (2.61 
are perpendicular to this plane. 

3. The stationary motions (2.4)-(2.6) can be represented geometrically, in k, o, h, 
parameter space, by the points on the curve I', whose branches, corresponding to the motions 



300 

(2.4), are described in parametric form by equations of the form k= J#, 0= 0 (0). 1.~=).,(6!), 

and the branches corresponding to the motions (2.5) and (2.6), by equations of the form /C = 
J(o)Q(((r), X,=&,((J). Fig.2 shows the form of the projection of the curve r onto the plane 
h,==O for the case whentheparameters of the system satisfy the conditions 

(I< I, - J, < J, - J, < mn (1 - a) (S.1) 

The conditions hold, in particular, for a homogeneous body stretched in the direction of 
the z3 axis and suspended from a fairly long rod. 

In Fig.2 the branches I',(a),r,(b), r, (cl, r4 (d), r6(aIrr, (b), for which the letters 
a, b, c and d denote the types of motions, with the relative positions of the points 01, 0, c 
depicted in Fig.1, correspond to the motions (2.4). The branches r,(j)(a), r.p Cd), rp (b), 

r,(J) cc) , correspond to the motions (2.5) and (2.6), and for (2.5) j=l, while for (2.6) 
j=2. Here the letters a, b, c and d refer to the types of relative positions of the rod 
Or0 and segment CO of the x3 axis, shown in Fig.3. Figs.3a-d refer to the case when Q is 
finite, and Figs.a'-d' to the limiting case when Q?= 00. We have the following relations in 
Fig.3 for the cases a-d and al-d': 

a)~<a<~<~;b)~<a<2n-~<<;c)O<6-n<<<< 

a')a=6-_;b')a.=arcsin~, @=T;c') a=%-, fi=$ 

d)O<n-a<<n-I? zc <-i-; d') a=n-arcsin+, *=3" 
2 

Note that the projections in Fig.2 ofthebranches of r, corresponding to the motions (2.4) 
on to the plane h,=O, should be regarded as double curves consisting of two "edges", with 
a different type of motion shown in Fig.1 corresponding to each edge. 

4. The sufficient conditions for stability of the stationary motions (2.4)-(2.6) relative 
to the variables v,o, v, a, fi, y, where v and 0 are the velocity vectors of the centre of mass 
and the instantaneous angular velocity of the body , are obtained from Routh's theorem /5/ as 
the conditions of positive definiteness of the second variation S’W* on a linear manifold 
defined by the equations 

6n,=6jl,=Gn,i=6ny=6n,8=6n~,=6ny,= 0 (4.1) 

bet us denote by (S'w,) the value of S'W, on the manifold (4.1). When the motion is 
perturbed, we retain the former values of the variables which vanished when the motion was 
unperturbed. In this case we will have the following relation for the motion (2.4): 

CP(@W,)= 2 [A,*vjZ+ ?rnal~~~~+- (IL,- Jj- m~~)y,~] 
j=l 

The conditions of positive definiteness of this quadratic form are given by the in- 
equalities 

&* > 0, I.,,* (h, - J, - maz) - (~uZ)~ > 0 (i = 1, 2) 

or, after substituting the values for &* and A, given by (2.4), 

a>o, -2 A,, + mu2 + *)+I<0 (j=1,2) 

Substituting into these inequalities the value of I? given by (2.4), we can write them 
thus 

u = mu2B2Z (vsg - LPl)-'> 0, Qj (vQ, ys, SF)> 0 (j = 1, 2) (4.2) 
Q, = Aj,lV - v,g(Aj3 + mu2 - ~~~~ md) 9’ - 

hw?ma (vQ = 3, ys = 1-y) 

When analysing conditions (4.21, we shall assume, to be specific, that the inequalities 
(3.1) hold for the parameters of the system. 

Let us denote by Pi(r) and P&*)(i= 1,2, 3, 4) the points on the curve I- (Fig.21 at which 

the motions (2.5) and (2.6) respectively branch out from themotions (2.4). The values ujit 

Qji2 (j=1,2) of the parameters s,L? are given for these points by the equations 

or, substituting into the second equation the value of s from the first equation, we obtain 
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&et us consider the motions (2.4) in which the point 0 lies below the point O,(v,=I), 
andthepoint C below the point O(y,=--1) (Fig-la). We will denote by O< Qma< Qna< g/E< 

Q,Sa < p,za the positive roots of the equations Q1 (I, -1, Q2)=0 (j= 1,2). Then the analysis 
of condition (4.2) will lead to the following conclusions. The motions in question are stable 
and the degree of instability x=0 if O<P<P~;d, and are unstable and x=1 if L&z< 
SP<&2, and x=3 if S-&,2 < Q* < szm8. We have here x=2 if 81,2< @< Q2,,*, and ,x=4. 
if s1,Ba<522< m. 

Let us now considertbemotions (2.4) in which point 0 lies below the point 0, (vs = l), 
and point C lies above the point 0 (Yt = 1). We will denote by g/l< &,2<Q,,z the positive 
roots of the equations Qj(It I,@)= 0 (j = 1,2). Then for these motions we will have x=2 
if 0< S2a<L&2, x = 3, if Q,,2< Q2< S'&*, and x = 4 if Q,a2<@< oo. 

Next we consider the motions (2.4) in which point 0 lies above the point 0, (vs L-; -I), 
and point C below the point O(y,=-1) (Fig.1~). We denote by 0< 8,,*< BIaS the positive 
roots of the equations Qj(--1, --1,%')= 0 (j = 1,2).Then we shall have for these motions x = 2 
if O( SY< &,z,x = 3 if SZ,a<PZ<S&4a and x=4 if ~,,2<f/2<oo. 

Finally we consider the motion (2.4) in which point 0 lies above the point O,(Y, = --1) 
and point C lies above the point O(y, - 1) (Fig.ld). Then for these motions x = 4 for all 
S-P> 0. 

The stationary motions for which ,x=0 are stable and the motions for which X==lor 
x=3 are unstable. The character of the stability of the motions for which x = 2 or 

"x. = 4, cannot be determined using Routh's theorem. 

5. When studying the stability of the motions (2.5) and (2.6), we shall assume without 
lOSS of generality that during the motion of the system the rod remains, at all times, within 
the plane y, = 0 and therefore vp= 0. 

Let us introduce the function 

where p, h, x are the undetermined Lagrange multipliers. The values of the variables q = (p, 
h,x, yl, vl, y3,v8, a3, &, ya), obtained from the condition 3Wsf8q = 0 of stationarity of the 
function &Pare identical with their values in the solutions (2.5) and (2.61, and we have 
p = h,, h = (I*, while x = J, for (2.5) and x =J, for (2.6). 

The sufficient conditions of stability of the motions (2.5) and (2.6) are obtained as 
the conditions of positive definiteness of the second variation PW* on the linear manifold 
6Vl = SV, = 6V8 = 0. The conditions reduce to the requirement that the last four principal 
diagonal minors of the Hessian D (W*) = 0’W*f8q2 of the function W* be negative over al.1 its 
variables /5/. 

The sufficient conditions of stability for (2.5) are given by the inequalities /6/ 

Qz (Ja - J1) > 0, 52% > 0 6.1) 

Ai = mlaQzy,ay,e Im&P + via + 4J+m (Iv, - ayl)z~3z1 > 0 

D (W*) = Pa (J1 - JB)A, 

and for (2.6) by the analogous inequalities in which Jn -J1 has been replaced by Jr - Jzs 
#3* by a, and J, by Ji. 

Let us consider the motions (2.5). For the branch I',(r) (Fig.2) we have a > 0, dkfda> 
0 and conditions (5.1) hold except the first one. Therefore, the motions corresponding to 
the branch r,(l) are unstable (x = 1). For r,(l) we have .e < 0, u + ma% > 0, dklda< 0, hence 
A,<O.Therefore the motions correspondingto'the branch I',(l) areunstable& = 3). For I',@) we have 
0 + ma2.< 0, 2 (a + maz) i- Js - J8> 0, dkfda > 0 and .A,<O, therefore the motions correspond- 
ing to the branch r,(lf. are unstable (x = 3). Finally, for Fe(') we have 2 (q+ mu%) + J2 - 
J, < 0, dkid@ > 0 and Act,<O, therefore the motions are unstable fx = 3). 

The conditions of stability of the motions (2.6) can be investigated in exactly the same 
manner. 

Fig.2 shows the results of analysing the conditions of stability of the motions (2.4)- 
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(2.6). The numbers accompanying the branches of curve I' indicate the degree of instability 
of the corresponding motions. The distribution of the stable and unstable motions on the 
branches of the curve I? is governed by the law of variation in stability for fixed values of 
the pasameter k, and the change in the degree of instability occurs only at the bifurcation 
points. 

6. The problem of the relative equilibrium of a body suspended from the fixed point 0, 
on a rod attached at the point 0 lying on the principal central axis of inertia, in a O,IJ,JJ,~, 
coordinate system rotating uniformly about the vertical with angular velocity Q, is reduced 
to studying the potential energy u = B - '/JR' due to gravity and the centrifugal force /4/. 

Let us denote by U, the function defined by the expression for W, in which W has been 
replaced by U. The conditions of stationarity ofW,and U,are the same, and formulas (2.4)- 
(2.6),inwhich relations of the form k =JQ have been omitted, will describe the families 
of all relative equilibria. 

The set of relative equilibria can be represented geometrically in M, 0, & parameter 
space by the point on the curve B determined by equations of the form 51 = Q (a), h, = h, (0). 

When conditions (3.1) hold, the projection of the curve B on to the plane h, = 0 consists 
of several branches. The branches B%(a) and B,(b), B,(c) and B,(d), B,(a) and B,(b) forming 
double lines, correspond to the equilibria (2.4). Here the letters a, b, c and d denote the 
types of equilibria in which the relative positions of the pointso,, 0, C, aregiveninFig.1. The 
pairs of branches Br(')(a) and B1@)(a), B,(')(d) and B,@)(d) , B,(l) (b) and B,@) (b) , B,(")(b) 
and B,@)(b) which branch out of the branches B,(a), B,(c), Bs (a) and B,(b) at the points 
p,(j), p,(j), p,(j), pa(l) respectively, correspond to the equilibria (2.5) and (2.6). Heretheletters 

a, b, c and d denote the types of relative position of the rod 0,O and the segment CO of 
the zsaxis shown in Fig.3. 

In order to study the stability of the relative equilibria (2.5) and (2.61, we shall 
introduce the function U*obtained from the expression for W* by replacing W and U. The values 
of the variables q = (p, 1, X, yl,Vlt y3, Va, %, &,Y~) obtained from the condition aU*idq = 0 of 
stationarity of the function U* are the same as those for the families of equilibria C2.51, 

(2.6), andwe have t_l=L, %==a,, while x = J, for (2.5) and x = Jr for (2.6). 
The sufficient conditions for stability of the relative equilibria (2.51, (2.61 are 

reduced to the demand that the last four principal diagonal minors of the Hessian D(UU)= 
d”U*iaq2 of the function U*be negative. In the case of (2.5) the conditions are expressed 
by the inequalities /6/ 

W (,I2 - J1) > 0, Q*u > 0, m1W4y,Zy,Z (mu20m1 + v;) > 0 

and for (2.6) by the analogous inequalities in which J,-- J1 has been replaced by Jl- Jz 
and A,,' by A,,. 

Analysing these conditions we arrive at the following conclusions. The relative equilibria 
corresponding to the branch Bl@i, are stable (x = 0). The equilibria corresponding to the 
branches B,('j and B,(l), Bs!r), B,(l) are unstable, and we have for them x=1 and x=3 
respectively. For the branches &,('I, B$@), B*@) we have 2 -- 2. 
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